

Commercialization of Nanofibers produced by Hybrid Electrospinning

2019. 01. 31

Y. S. Song

Amogreentech Co., Ltd.

Contents

- Introduction of Amogreentech
- Development of Nanofiber Membrane
- Difficulty of Commercialization
- Optimization of Nanofiber Manufacturing Process
- Application of Nanofiber Membrane
- Conclusion

AMO Group Overview

Global Leader in IT, Automotive, High Efficient Energy & Bio Technologies

Established in Oct.,1994 (Public since 2003)

- EMC
- Antenna
- BLDC Motor

Established in Nov., 2008

- Wireless Charging
- Ceramic Division
- Packaging Division
- Sensors
- Circuitry
- Integration S/W

AMOGREENTECH

Established in Jan, 2004

- Nanocrystalline Core
- Nano Fiber
- Thermal Plastic / Materials
- Flexible Battery
- Thin FPCB
- Water/Air Filter

AMO LIFE SCIENCE

Established in Sept, 2016

- Cell Culture
- Magnetic Beads
- Wound Patch
- Smart Skin
- E-Health Care Device

Amogreentech's Nano Materials

Amogreentech's Business Area

Nanocrystalline

Core

- CT
- CMC/Powder Core

Wireless Power Supply

LF Antennas materials

Nano Membrane

Air Vent (IPX4)

IP67/68 membrane with High

resistance to water pressure

Nano Sensors

Water Treatment Filter

Thermal Materials

Thermal Plastic

Thermal Coating

Thermal Interface Material

Battery

ESS(UPS)

Flexible Battery

Flex / Nano Ink

Nano Ink

Metal Mesh

FPCB

- Ultra Thin FPCB
- Multi Layer FPCB
- Direct Printing FPCB

Water / Air Filter

Water Filter

Air Filter

Fuel Filter

Patent Porfolio

V Based on Nano technology Patents Acquisition to become Global Leader in Materials Field

What is Nanofiber?

- 1/20 diameter compared to conventional microfiber
 - : Diameter below several hundred nm
- Expanding applications with innovative performance
 - : Functional Textile, Vent, Filter, Sound Absorber, Next Generation Energy, Bio application, etc.

Features

High specific surface area

Small pore structure

Why use Nanofiber Membrane?

Features

- Super specific surface area
- Narrow pore size distribution
- High Porosity (70~85%)
- Perfect 3D Open pore structure (No blinded pore)
- Excellent uniformity
- Excellent breathability
- Excellent molecular recognition ability
- Excellent adsorb-ability
- Easy to incorporate functional additives

Microfibers vs. Nanofibers

CONVENTIONAL

NANOFIBER

Fabrication of Nanofiber Membrane

Nanofiber Membrane: Manufactured by Electrospinning

Characteristics of Nanofiber Membrane

Membrane formed by nanofibers

Existing membrane

Features of Nano Membrane

- High specific surface area
- Fiber diameter of 5 ~ 500 nm
- High porosity (3D structure)
- small pore structure

Nanofiber membrane(AMOTEX®)

Application of Nanofiber Membrane

- Water & Air filters
- Fuel filter
- Gas turbine filter

Functional Fabric

- Garment & Outdoor cloths
- Protection fabrics
- Sport wear
- Military cloths

Others

- Nanofiber fillers
- Sensor applications
- Acoustic absorbent (Building, Automobile, Aircraft)

Electric & Energy

- Carbon nanofiber applications
- Separator for 2nd batteries
- Anode, Cathode material for 2nd batteries
- Transparent film as electrode

Life Science

- Transfer membrane
- Wound healing
- Scaffold for GTR membranes
- Anti-flu mask
- Barrier material
- Multi-functional nanoweb

Commercialization of Nanofiber Membrane

2007

- R&D started
- Lab. Scale facilities were installed

2010

- Pilot plants were installed
 - Spinning width of 500, 1,000mm

2012

- Mass production lines were installed
 - Spinning width of 1,100, 1,700mm
- Productive Capacity was 60,000m²/month

2015

 Facilities for the vents and adhesive area were added

Appearance of the Nanofiber Membrane

▲ Lab. Scale equipment

▲ Production line(1,700mm line)

▲ 1,700mm line in operation

Commercialization of Nanofibers

Commercialization of Nanofibers

Optimization of Nanofiber Performance

Hybrid Electrospinning (Electric & Air)

Morphology Control
By Air Force

Setup of mass production technology

Hybrid Electrospinning

Electric & Air Hybrid Electrospinning

Superior uniformity and productivity

nables mass production

Classification	Hybrid E-spinning	Electro Blown	Pure E-spinning	Nozzless E-spinning
Methods	Electric+Air	Air+Electric	Electric	Electric
Nozzle	Yes	Yes	Yes	No
<u>Productivity</u>	0	0	X	Δ
Polymer versatility	0	Δ	Δ	0
Web thickness	0	0	X	X
Web evenness	0	X	0	Χ
Control of fiber diameter	0	X	Δ	Δ
Web density	Ο	Χ	Χ	0

X: Poor, \triangle : Moderate, \bigcirc : Good, \bigcirc : Excellent

-

Hybrid Electrospinning

"Very narrow pore size distribution & easy to optimize"

Changes in customer demand for outdoor clothing materials MO

comport

Breathable Fabric

Improvement of permeability

Changes in customer demand for outdoor clothing materials MO

Nanofiber Membrane

Moisture-proof(waterproof)

Breathable (air, sweat permeability)

- Waterproof : pore size control OK!
- Breathable : pore size control OK!

high porosity OK!

- Wash durability OK!
- Reduction of friction noise OK!
- Price competitiveness OK!

Nano Membrane

Textile

Customer needs for Vent materials

Vent Membrane for acoustic

Moisture-proof(waterproof)

Sound permeability

OK!

- Waterproof : pore size control OK!

Maintain sound permeability: lightweight, soft, high porosity

Maintain mechanical strength OK!

Example of actual use of Vent (speaker sound test) AMO

IPX7 grade 2 Point / Spk 1ea, Rcv 1ea

Speaker

Receiver

Example of actual use of Vent (speaker sound test) AMO

Expanding application areas of Vent

Expanding application areas of Vent

Vents

Hearing device

Others

Lights

Liquid Storage Tanks

Sensor

Telecommunication Infrastructure

Solar panels

Customer needs for heat dissipation (insulation) MO

Requires high performance & thinness

Needs for heat control

HTF: Hybrid Thermal Film
(In plan: 400 W/mK, Through plan: 0.3 W/mK)

Thermal insulation

Heat Spreading

Customer needs for heat dissipation(insulation) MO

- Heat dissipation through fast horizontal heat conduction by Cu (400 W / mK)
- Superior vertical insulation property by Nano Web (0.3 W / mk)
- → Surface temperature is lowered by "heat dispersion layer + heat insulating layer"
- → Price competitiveness compared to existing heat-insulating sheet

Hybrid structure with thin thickness satisfies customer's demand

Why use Nanofibers in Filtration area?

Features

- Narrow pore size distribution
- High Porosity (70~80%)
- Perfect 3D Open pore structure (No blinded pore)
- Excellent uniformity
- Fixed pore construction

Benefits

- Excellent removal efficiency
- Very low pressure drop
- · Longer filter service life
- Lower energy costs
- Reduced equipment downtime
- Reduced investment costs due to compact size of filter systems
- Customize design & manufacturing

Nano filter Advantage

Micro membrane Diameter of fiber : 1~ 3µm

Porosity: 20~ 35%

Wide distribution: range of pore size distribution : 0.1~1.2µm

Amogreentech
Diameter of fiber:
0.1~ 0.3µm

Porosity: 65~ 70%

Narrow distribution: range of pore size distribution: 0.4~0.6µm

Water/Air treatment system using Nanofiber membrane MO

Powerless water purification system

3 layer membrane filtration module

Membrane for sewage / waste water

Flat membrane filtration module system for sewage / waste water

Portable Water Bag

Automatic Ventilation Products

Western Membrane

Commercial VS Electrospin PVDF membrane

Commercial PVDF Membrane

	Commer cial	Nanofiber
Pore Size (μm)	0.45	0.2~0.45
Thickness (μm)	165	60~150
Porosity (%)	67.7	73.3

Low uniformity

High uniformity

Electrospin PVDF membrane is "more sensitive" than commercial PVDF membrane.

Expanding application areas of Nanofibers

<Liquid Filter>

<Fuel filter>

<Filter module>

Electronic materials

<Acoustic vents film> <Hybrid thermal film>

<Culture system>

<Patch>

<Mask pack>

Textile

<AMOTEX>

Battery

<ESS(UPS)>

<Flexible Battery>

<Super Capacitor>

<Separator for LIB>

Commercialization of Nanofibers

Find Needs of Customers

Value Creation

Challenging the world with advanced material products

yssong@amogreentech.co.kr

